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Outline

** Noise measurement +** Noise removal

* Filter-based * Spatial domain
 Block-based * Transform domain
e Wavelet-based * Non-local methods

* TV, SC, DL



Noise Measurement --- Noise Model

Additive White Gaussian Noise (AWGN)
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Noise Measurement --- Filter-based

Input image

Output image

¢ Low-pass filter:
Nyy = Vyy — Ky * Uy,
k; can be average, median, Gaussian, etc.
*»* High-pass filter:
Ny, = kj * Vy, (Faster)

k;, can be Laplacian, gradient, etc.



Noise Measurement --- Filter-based

Limitation: See no difference between details and noise.

Remedy: Edge detector + Laplacian filter [Tai, et al. 2008]
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Noise Measurement --- Filter-based

Another limitation: The filtered result is assumed to be
the noise, which is not always true especially for images
with complex structure or fine details.

Remedy: Measure the noise only on those smooth blocks.

Gaussian Noise
filter estimation

[D.-H. Shin, et al. 2005]




Noise Measurement --- Block-based

How to determine the homogeneous blocks ?
A homogeneous block is a block with uniform intensities.

** Compute local variation

** Analyze local structure [Amer, et al. 2005]
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Noise Measurement --- Block-based

Limitation: Assume the existence of homogeneous blocks.

Remedy: Principle component analysis [Pyatykh, et al. 2013]
The noise variance can be estimated as the smallest eigenvalue of
the image block covariance matrix. T

Toy example: oo
1D signal {x,} =11, 3, 1, 3, ...} o
Noise n,~ N(0, 0.5%)




Noise Measurement --- Wavelet-based
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(a) First level of decomposition

(b) Second level of decomposition

Median Absolute Deviation (MAD) —
[D. L. Donoho, 1995]
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Noise Measurement --- Wavelet-based

Limitation: MAD assumes HH1 associates only to the noise,
and it tends to overestimate the noise standard deviation
under high SNR.

Remedy:

Adaptive thresholding
e SureShrink [Donoho, et al. 1995]
 BayesShrink [Simoncelli, et al. 1996]

Non-local (BM3D) [Danielyan, et al. 2009]
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Noise Measurement --- Wavelet-based

+» Statistical model [Zoran, et al. 2009]

kurtosis of marginal distributions in clean natural images
is constant throughout scales
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Outline

** Noise measurement +** Noise removal

* Filter-based * Spatial domain
 Block-based * Transform domain
e Wavelet-based * Non-local methods

* TV, SC, DL
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Noise Removal --- Evolution

Transform domain

Spatial domain Non-local
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:frequency Thresholding MRF SA-DCT I : Deep learning

Recent
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Noise Removal --- Spatial Domain

Design of the kernel (sliding window)

Non-linear

Isotropic Anisotropic
(Blur edges) (Preserve edges)

Kernel

Median Average Gaussian Bilateral Steerable .
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Noise Removal --- Spatial Domain

Bilateral filter [Tomasi, et al. 1998]
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Noise Removal --- Spatial Domain

Kernel regression / Steerable filter [Takeda, et al. 2007]
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Noise Removal --- Transform Domain
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Noise Removal --- Transform Domain

> DWT thresholding

Thresholded
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Noise Removal --- Transform Domain

*** DWT statistical modeling --- HMMs [Crouse, et al. 1998]
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Noise Removal --- Transform Domain

*** DWT statistical modeling --- GSM [Portilla, et al. 2003]
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Noise Removal --- Non-local Method

** Non local means (NL-means) [Buades, et al. 2005]

om  Given a discrete noisy image v = {v(i)|i € I}

NL[V] (i) = Z w(i, v (j)
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Noise Removal --- Non-local Method

*s* BM3D [Daboy, et al. 2007]

Block matching + 3D transform + Thresholding
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Noise Removal --- Non-local Method

** BM3D-SAPCA [Daboy, et al. 2009]

Noisy
image Shape-adaptive .
— grouping * Collaborative i
Obtain shape filtering
by 8-directional obtain PC'A ] |
LPA-ICI basis || -1 t.ransform —-{Aggregatian‘
Find simlar Shrinkage | l
blocks by Inverse 3-D | .
block-matching transform : Dﬁizggd
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Noise Removal --- TV Minimization

TV = 2 ‘Iij — Ii,j+1‘ + ‘Iij - Ii+1J"

ij=1
I TV
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66 92 211 66 92 211
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Noise Removal --- TV Minimization

** ROF [Rudin, Osher and Fatemi, 1992]

n 1
min||Ku — b||2 + /12 (VZu; + VZu,;)?
u \ J i=1

Y \. J
Y

Fidelity term

) , Regularization term
(Gaussian noise)

(TV)
K --- linear operator (identity in denoising).

b --- the observation .
U --- denoised image.



Noise Removal --- TV Minimization

n 1
min|[u — b|3 +/12 (VZu; + VZu;)?
u i=1

. n
Impulse noise |Ju — b||, 2 Vo] + |V,

Laplace noise u — b 1 (" ;l ——————————————
: |
Uniform noise ||u — b|| : Z 1”qui“O T HVyuiH(,l

Achieve best performance in [Xu, et al. 2011]



Noise Removal --- Sparse Coding

Dictionary D

Observation y

[al, . 364] = [0, U B, 0.8, © S o S 0.3, 2 N 0.5, 0] Sparse coefficients 0 ¢
(feature representation)



Noise Removal --- Sparse Coding

+* Sparse coding [Elad and Aharon, et al. 2006]
P ] 2
a = argmin||Da —yllz + Alletllo
¢ Dictionary learning

* K-SVD [Aharon and Elad, et al. 2006]

 K-LLD (learned local dictionary) [Chatterjee, et al. 2009]
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Noise Removal --- Sparse Coding

** Learned simultaneous sparse coding (LSSC) [Mairal, et al. 2009]

BM3D + grouped sparsity
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29



Noise Removal --- Sparse Coding

¢ Clustering-based sparse representation (CSR) [Dong, et al. 2011]

K
R . 1 1 Y
@ = argmin IDa —yll5 + A llall; + 2, Z Z la; — Bills

k=1 ieC,
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Y

Cluster-based regularization

* Combine global thinking with local fitting

 Combine clustering and sparsity under a
uniform framework



Noise Removal --- Deep Learning

¢ Stacked denoising auto-encoder (SDAE) [Vincent, et al. 2010]
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The denoising autoencoder architecture. An example x is stochastically corrupted (via
qgp) to X. The autoencoder then maps it to y (via encoder fy) and attempts to reconstruct
x via decoder gy, producing reconstruction z. Reconstruction error is measured by loss
Ly(x,z).
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Noise Removal --- Deep Learning

¢ Stacked denoising auto-encoder (SDAE) [Vincent, et al. 2010]
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Stacking denoising autoencoders. After training a first level denoising autoencoder (see
Figure 1) its learnt encoding function fg is used on clean input (left). The resulting
representation is used to train a second level denoising autoencoder (middle) to learn a

second level encoding function féz) . From there, the procedure can be repeated (right).
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Noise Removal --- Deep Learning

Can neural networks compete with BM3D? [Burger, et al. 2012]

Input Layer Hidden Layer QOutput Layer
M neurons N neurons

e Cleanimage x

* Noisy image z by corrupting
x with noise

* Denoised image y

* Minimize ||x — y||,
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Conclusion --- Development Tendency

Spatial domain = Transform domain
Local statistics 2 Non-local statistics
Thresholding = Statistical modeling

Direct estimation = Regularized optimization



Conclusion --- State-of-the-Art

¢ Local in spatial domain
Kernel regression [Takeda, et al. 2007]

*** Neighborhood in transform domain
GSM [Portilla, et al. 2003]

*¢* Non-local in transform domain
BM3D [Dabov, et al. 2007] = BM3D-SAPCA [Dabov, et al. 2009]

¢ Sparse coding in transform domain
K-SVD [Aharon and Elad, 2006] = CSR [Dong, et al. 2011]
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Conclusion --- The Future

Non-local + Transform-domain + Sparsity
J

(N J U
Y Y
Intensity similarity, DFT, DWT, DCT
Geometrical similarity PCA, SVD

[Chatterjee, et al. 2012] [Rajwade, et al. 2013]
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